Basic Crystallography

- Presented by
- Shivkumar P. Bias
- Asst. Prof.
- Department of Physics
- Dr. H.N.Sinha College Patur

An unspeakable horror seized me. There was a darkness; then a dizzy, sickening sensation of sight that was not like seeing; I saw a line that was no line; space that was not space.......
I shrieked aloud in agony, " Either this is madness or it is Hell."
"It is neither," calmly replied the voice of the Sphere, "it is Knowledge; it is Three Dimensions: open your eye once again and try to look steadily........
"Distress not yourself if you cannot at first understand the deeper mysteries of Spaceland. By degrees they will dawn upon you."

On the occasion of the Square's first encounter with three dimensions, from
E. A. Abbott's Flatland, (1884).

Repetition = Symmetry

Types of repetition:
Rotation
Translation

Rotation

What is rotational symmetry?

Imagine that this object will be rotated (maybe)

Was it?

The object is obviously symmetric...it has symmetry

The object is obviously symmetric...it has symmetry

Can be rotated 90° w/o detection

............so symmetry is really doing nothing

Symmetry is doing nothing - or at least doing something so that it looks like nothing was done!

What kind of symmetry does this object have?

What kind of symmetry does this object have?

What kind of symmetry does this object have?

What kind of symmetry does this object have?

What kind of symmetry does this object have?

What kind of symmetry does this object have?

Another example:

Another example:

6 mm

And another:

And another:

2

What about translation?

Same as rotation

What about translation?

Same as rotation
Ex: one dimensional array of points

Translations are restricted to only certain values to get symmetry (periodicity)

2D translations

Lots of common examples

Each block is represented by a point

This array of points is a LATTICE

Lattice - infinite, perfectly periodic array of points in a space

Not a lattice:

Not a lattice:

Not a lattice -some kind of STRUCTURE becuz not just points

Another type of lattice - with a different symmetry

rectangular

Another type of lattice - with a different symmetry

square

Another type of lattice - with a different symmetry

hexagonal

Back to rotation -
 This lattice exhibits 6-fold symmetry

hexagonal

Periodicity and rotational symmetry

What types of rotational symmetry allowed?

Periodicity and rotational symmetry

Suppose periodic row of points is rotated through $\pm \alpha$:

Periodicity and rotational symmetry

To maintain periodicity,

vector $S=$ an integer \times basis translation t

vector $S=$ an integer x basis translation t
$\mathrm{t} \cos \alpha=\mathrm{S} / 2=\mathrm{mt} / 2$

m	$\cos \alpha$	α	axis	
2	1	0	2π	1
1	$1 / 2$	$\pi / 3$	$5 \pi / 3$	6
0	0	$\pi / 2$	$3 \pi / 2$	4
-1	$-1 / 2$	$2 \pi / 3$	$4 \pi / 3$	3
-2	-1	$-\pi$	π	2

m	$\cos \alpha$	α	axis	
2	1	0	π	1
1	$1 / 2$	$\pi / 3$	$5 \pi / 3$	6
0	0	$\pi / 2$	$3 \pi / 2$	4
$=1$	$-1 / 2$	$2 \pi / 3$	$4 \pi / 3$	3
-2	-1	$=\pi=\pi$	2	

Only rotation axes consistent with lattice periodicity in 2-D or 3-D

We abstracted points from the shape:

We abstracted points from the shape:

Now we abstract further:

Now we abstract further:

Now we abstract further:

This is a UNIT CELL
Represented by two lengths and an angle
.......or, alternatively, by two vectors

Basis vectors and unit cells

a and b are the basis vectors for the lattice

In 3-D:

a, b, and c are the basis vectors for the lattice

In 3-D:

a, b, and c are the basis vectors for the lattice

Lattice parameters:

The many thousands of lattices classified into crystal systems

System Interaxial

Axes Angles

Triclinic
Monoclinic
Orthorhombic
Tetragonal
Cubic
Hexagonal
Trigonal

$$
\begin{aligned}
& \alpha \neq \beta \neq \gamma \neq 90^{\circ} \\
& \alpha=\gamma=90^{\circ} \neq \beta
\end{aligned}
$$

$$
a \neq b \neq c
$$

$$
a \neq b \neq c
$$

$$
a \neq b \neq c
$$

$$
a=b \neq c
$$

$$
\alpha=\beta=\gamma=90^{\circ}
$$

$$
\mathrm{a}=\mathrm{b}=\mathrm{c}
$$

$$
\alpha=\beta=90^{\circ}, \gamma=120^{\circ}
$$

$$
a=b \neq c
$$

$$
\alpha=\beta=90^{\circ}, \gamma=120^{\circ}
$$

$$
a=b \neq c
$$

The many thousands of lattices classified into crystal systems

System

Triclinic
Monoclinic
Orthorhombic
Tetragonal
Cubic
Hexagonal
Trigonal

Minimum symmetry
1 or 1^{-}
2 or 2^{-}
three 2 s or $2 s$
4 or 4^{-}
four 3 s or $3 s^{-}$
6 or $6-$
3 or 3

2 or 2

4 or 4

6 or 6 -
3 or 3 -

Within each crystal system, different types of centering consistent with symmetry

System Allowed
centering

Triclinic	P (primitive)
Monoclinic	P, I (innerzentiert)
Orthorhombic	P, I, F (flächenzentiert), A (end centered)
Tetragonal	P, I
Cubic	$\mathrm{P}, \mathrm{I}, \mathrm{F}$
Hexagonal	P
Trigonal	P, R (rhombohedral centered)

The 14 Bravais lattices

For given lattice, infinite number of unit cells possible:

When choosing unit cell, pick:

Simplest, smallest
Right angles, if possible
Cell shape consistent with symmetry

